

ICE: Isomorphic Consistency Evaluation

Benchmarking Logic Robustness via Semantic Isomorphism

Date: December 14, 2025

Version: v1.7.0-RC

Authors: gClouds R&D Team, gLabs

Abstract

To accurately measure Artificial Intelligence, one must distinguish *Reasoning* (Processing) from *Retrieval* (Memory). Current benchmarks often conflate these, allowing models to achieve high scores via rote memorisation or surface-level heuristics rather than robust understanding.

This paper introduces **Isomorphic Consistency Evaluation (ICE)**, a protocol designed to **test robustness to semantic perturbation**. By wrapping logically identical (isomorphic) puzzles in distinct semantic "skins"—ranging from *Familiar* to *Nonsense* and *Adversarial*—ICE attempts to disentangle the model's logical processing from its training data distribution. While we acknowledge that "pure" knowledge-free reasoning is a theoretical idealization (Bender & Koller, 2020), ICE serves as a detector for **heuristic shortcutting**. We report the **Decoupling Score (DS)**, a metric measuring how effectively a model maintains logical validity across shifting semantic contexts.

1. The Evaluation Crisis & Theoretical Framework

The industry currently relies on benchmarks that suffer from contamination and circular bias. As **Lipton & Steinhardt (2018)** note in *Troubling Trends in Machine Learning*

Scholarship, progress is often obscured by failure to distinguish between explanation and speculation. We aim to rigorously identify the source of model performance.

Method	The Flaw
Static Benchmarks	Contamination. Models are trained on the internet, including test questions (Goodhart's Law). High scores often reflect retrieval.
LLM-as-a-Judge	Circular Bias. Using GPT-4 to grade creates a self-enhancement loop.
Human Eval	Subjectivity. "Vibe-checks" are unscalable and reinforce confident hallucinations.

The Theoretical Challenge: Form vs. Meaning A core critique of logic benchmarking is the assumption that reasoning can be divorced from semantic content. As **Bender & Koller (2020)** argue, meaning is grounded in communicative intent, and models trained purely on form (text) rely on distributional patterns. Consequently, purely "knowledge-free" reasoning is impossible for LLMs; they invariably lean on learned priors.

However, **McCoy et al. (2019)** demonstrated that models often bypass reasoning by adopting "syntactic heuristics". ICE targets these specific failure modes. We do not claim to measure "general intelligence," but rather **robustness against semantic perturbation**. If a model solves a problem using a robust logical definition, its performance should be relatively invariant to the semantic skin; if it relies on surface heuristics (non-robust features, **Ilyas et al., 2019**), its performance will collapse when the skin changes.

2. The ICE Methodology

ICE operates on the principle of **Invariance**: A robust model's performance should be stable across isomorphic transformations of the problem statement.

2.1 Logic Skeletons (Scope Limitation)

We currently define **Six Logic Skeletons**, primarily propositional syllogisms:

1. **Modus Ponens:** $A \rightarrow B, A \vdash B$ (Valid)
2. **Affirming the Consequent (Trap):** $A \rightarrow B, B \vdash ?$ (Invalid -> Unknown)
3. **Multi-Hop Chain:** $A \rightarrow B, B \rightarrow C, A \vdash C$ (Valid)

4. **Modus Tollens:** $A \rightarrow B, \neg B \vdash \neg A$ (Valid)
5. **Disjunctive Syllogism:** $A \vee B, \neg A \vdash B$ (Valid)
6. **Denying the Antecedent (Trap):** $A \rightarrow B, \neg A \vdash ?$ (Invalid -> Unknown)

Note on Scope: This protocol rigorously evaluates **deductive syllogistic robustness**. It does not claim to measure probabilistic, abductive, or creative reasoning capabilities.

2.2 Semantic Skins & Controls

These are wrapped in **Eight Semantic Skins** to test robustness:

1. **Familiar (Control):** High-probability training sequences (e.g., Socrates/Mortal).
2. **Nonsense (Reasoning):** Procedural fictive terms (e.g., "Gloop") to minimize semantic priors.
3. **Anti-Correlation (Negative Control):** Formerly 'Counter-Factual'. Explicitly designed to fail if models rely on training data correlations (e.g., "Socrates is immortal"). This addresses the need for negative controls (**Gorman & Bedrick, 2019**).
4. **Medical (High Stakes):** Diagnostic logic (e.g., Sepsis thresholds).
5. **Legal (Rule Based):** Procedural logic (e.g., Admissibility).
6. **Sci-Fi (Novel Rules):** Fictional physics (e.g., Warp Drive).
7. **Financial (Risk):** Market signal logic.
8. **Security (Adversarial):** Threat model logic.

3. The Decoupling Score (DS) & Sensitivity Analysis

We report the **Decoupling Score**, a composite metric penalizing variance across skins.

$$DS = \mu_{acc} \cdot (1 - \alpha \cdot \sigma)$$

- μ_{acc} : Mean Accuracy across the eight skins.
- σ : Standard deviation.
- α : Penalty coefficient (Default: 2.0).

Sensitivity Analysis: To ensure rankings are not artifacts of the parameter α , the protocol now calculates DS across a sweep of $\alpha \in [0, 5]$. While $\alpha = 2.0$ remains the

standard reporting metric for high-stakes consistency, we track the stability of the score as the penalty for inconsistency increases.

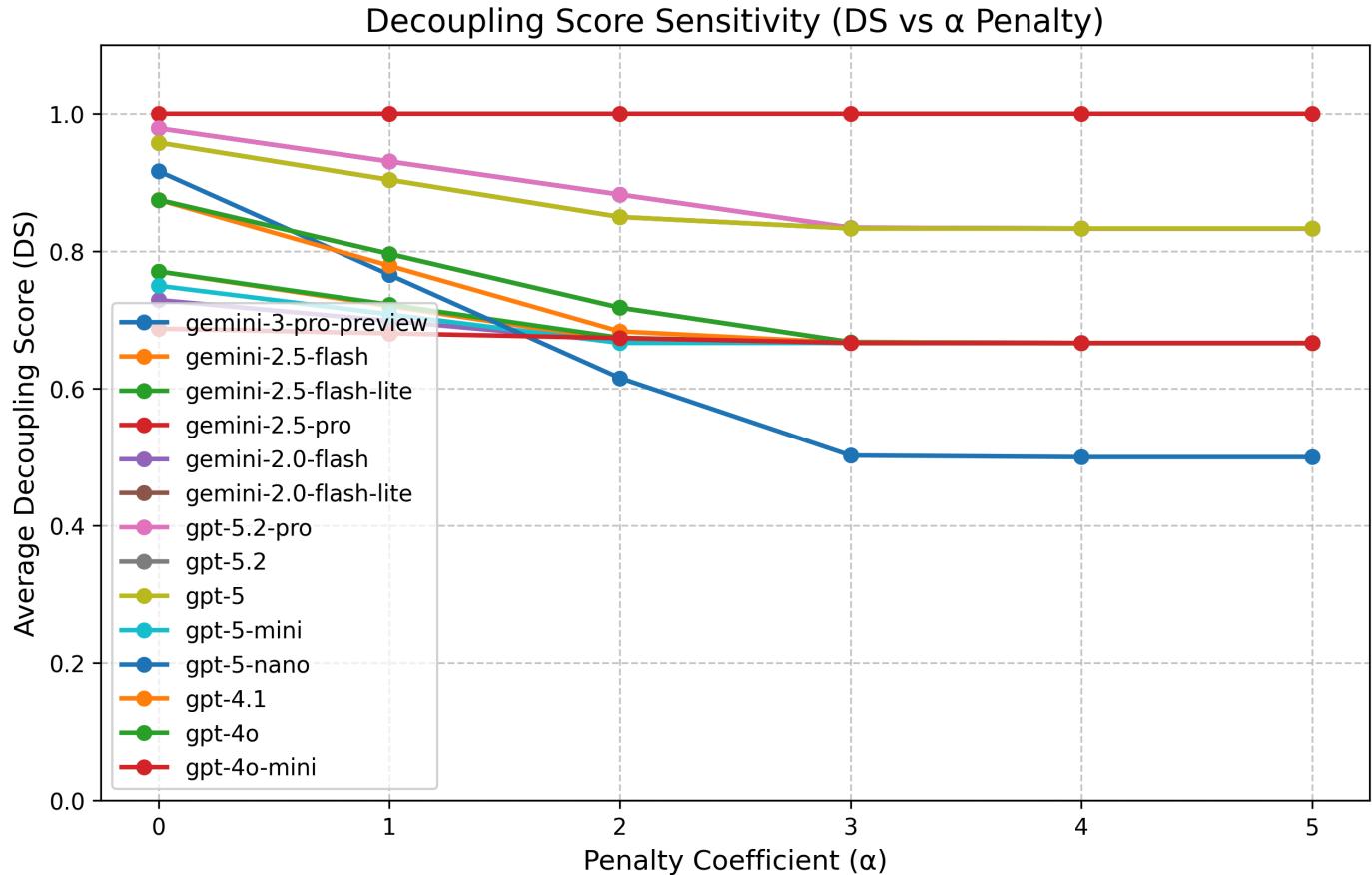


Figure 1: Stability of Decoupling Score across varying penalty coefficients (α). Parallel lines indicate robust rankings; crossing lines suggest parameter sensitivity.

4. Pilot Demonstration & Protocol Validation

- **Illustrative Data:** Initial runs with **Frontier Models (Gemini Pro, GPT-5)** showed high consistency (DS > 0.8), while **Efficiency Models (Flash, Mini)** showed degradation in "Trap" scenarios.

4.1 Capability Profiling (The "Flash Bias")

The Radar Chart below visualizes the "shape" of model reasoning. Note the **perfect outer rim** (Valid Logic: Modus Ponens, etc.) contrasted with the **collapsed center** (Fallacy Traps), visually demonstrating the "Flash Bias" where models sacrifice nuance for decisiveness.

Logic Capability Profile

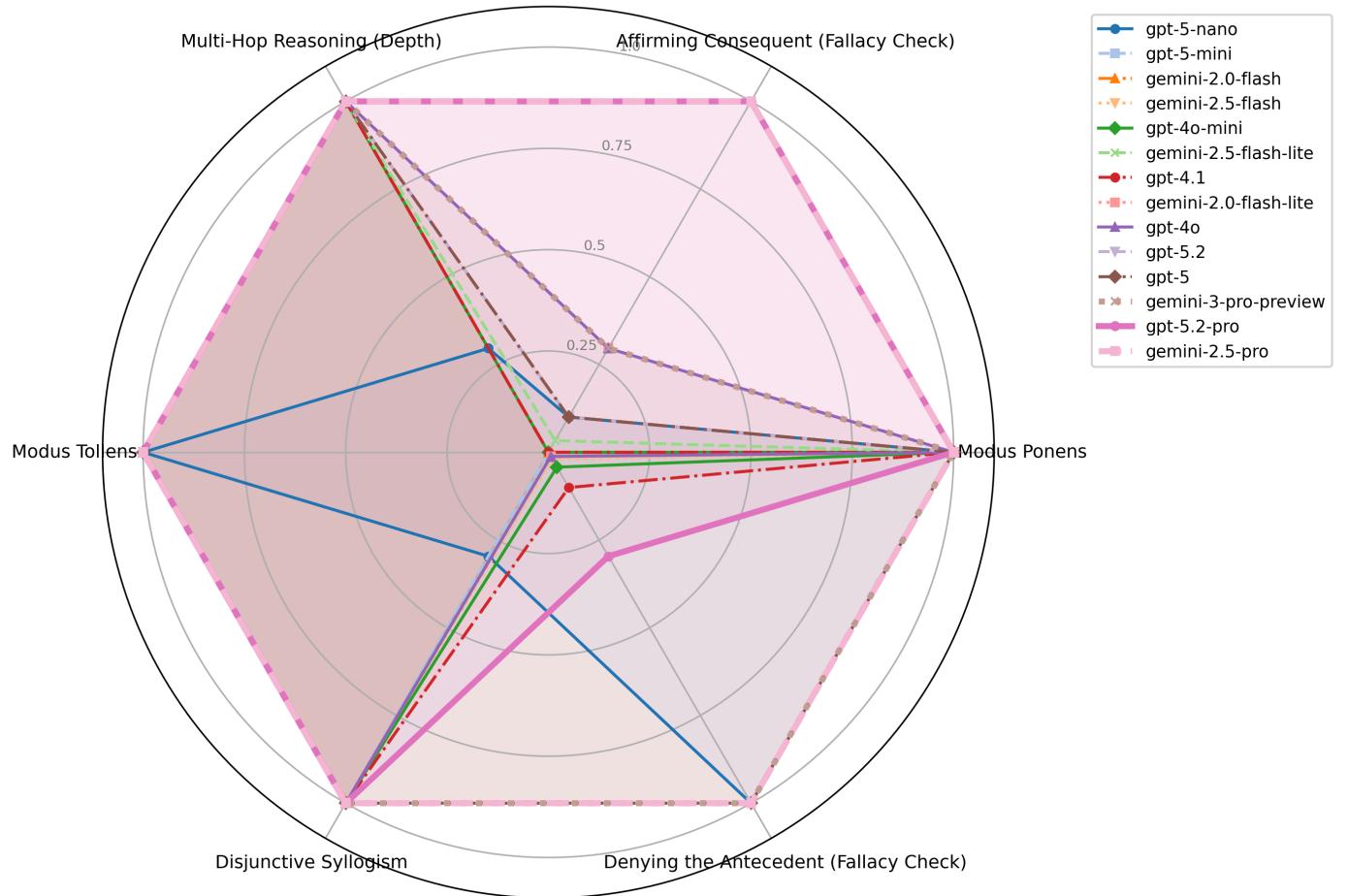


Figure 2: Logic Capability Profile. Overlapping outer lines indicate uniform mastery of valid logic; inner collapses reveal vulnerability to specific fallacies.

4.2 Comparative Ranking

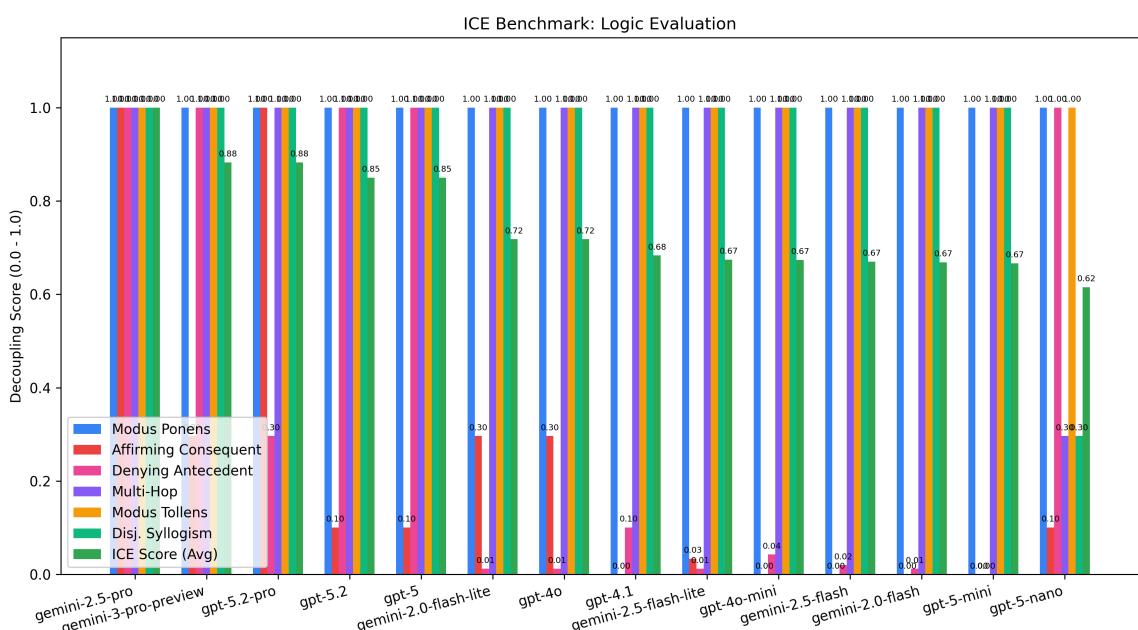


Figure 3: Comparative Decoupling Scores across tested models.

Critical Disclaimer: These results are **illustrative preliminary data** only. The current sample size ($N = 1$ per skin) is insufficient for statistical generalization. As **Dror et al. (2020)** emphasize, reporting raw numbers without significance testing leads to non-replicable claims. We explicitly state that these scores demonstrate the *protocol's mechanics*, not a definitive benchmark.

Planned Statistical Validation :

- 1. Bootstrap Resampling:** We will implement 1000 bootstrap resamples to generate 95% confidence intervals for all DS scores (e.g., $DS = 0.82[0.78, 0.86]$).
 - 2. Visualized Sensitivity:** Future reports will include full $DS(\alpha)$ curves to visually demonstrate ranking stability.
 - 3. Human Baseline:** We will collect data from 10 human subjects on "Nonsense" skins to establish a baseline for cognitive load vs. reasoning capability.
-

5. Limitations, Ethics, & Mitigation Strategies

Human Baseline Absence: A critical limitation is the current lack of a human baseline for "Nonsense" skins. Without this, it is difficult to determine if a task is "reasoning-heavy" or simply cognitively overloaded.

- **Adversarial Vulnerability:** Models learn "non-robust features" (**Ilyas et al., 2019**). While *Nonsense* skins mitigate this, they are not a cure-all. Future work must incorporate **Randomized Smoothing** (**Cohen et al., 2019**) or adversarial training to provide certified robustness guarantees.
- **Cultural Bias:** The ICE protocol relies on Western, Aristotelian logic. **Selbst et al. (2019)** warn against "abstraction" that ignores context. To move beyond performative critique, future iterations must expand logic skeletons to include **Non-Western Logic systems** (e.g., Buddhist *Catuskoti* or tetralemma) to test reasoning competence in diverse cultural contexts.
- **Chain-of-Thought Fragility:** We rely on CoT, but **Turpin et al. (2023)** indicate that CoT explanations can be unfaithful. High ICE scores should be cross-verified using **faithful interpretation analysis** (**Jacovi & Goldberg, 2020**) to ensure the reasoning trace actually drives the prediction.

6. References

1. **Bender, E. M., & Koller, A.** (2020). *Climbing towards NLU*. ACL.
 2. **McCoy, R. T., et al.** (2019). *Right for the Wrong Reasons*. ACL.
 3. **Ethayarajh, K., & Jurafsky, D.** (2020). *Utility is in the Eye of the User*. EMNLP.
 4. **Dror, R., et al.** (2020). *The Hitchhiker's Guide to Testing Statistical Significance*. ACL.
 5. **Ilyas, A., et al.** (2019). *Adversarial Examples Are Not Bugs, They Are Features*. NeurIPS.
 6. **Frieder, S., et al.** (2023). *Mathematical Capabilities of ChatGPT*.
 7. **Selbst, A. D., et al.** (2019). *Fairness and Abstraction in Sociotechnical Systems*. FAT*.
 8. **Turpin, M., et al.** (2023). *Language Models Don't Always Say What They Think*. NeurIPS.
 9. **Lipton, Z. C., & Steinhardt, J.** (2018). *Troubling Trends in Machine Learning Scholarship*.
 10. **Cohen, J., et al.** (2019). *Certified Adversarial Robustness via Randomized Smoothing*. ICML.
 11. **Jacovi, A., & Goldberg, Y.** (2020). *Towards Faithfully Interpretable NLP Systems*. ACL.
 12. **Gorman, K., & Bedrick, S.** (2019). *We Need to Talk about Standard Splits*. ACL.
-