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Abstract

To accurately measure Artificial Intelligence, one must distinguish Reasoning
(Processing) from Retrieval (Memory). Current benchmarks often conflate these,
allowing models to achieve high scores via rote memorisation or surface-level
heuristics rather than robust understanding.

This paper introduces Isomorphic Consistency Evaluation (ICE), a protocol
designed to test robustness to semantic perturbation. By wrapping logically
identical (isomorphic) puzzles in distinct semantic "skins”—ranging from Familiar to
Nonsense and Adversarial—ICE attempts to disentangle the model's logical processing
from its training data distribution. While we acknowledge that "pure" knowledge-free
reasoning is a theoretical idealization (Bender & Koller, 2020), ICE serves as a detector
for heuristic shortcutting. We report the Decoupling Score (DS), a metric measuring
how effectively a model maintains logical validity across shifting semantic contexts.

1. The Evaluation Crisis & Theoretical
Framework

The industry currently relies on benchmarks that suffer from contamination and circular
bias. As Lipton & Steinhardt (2018) note in Troubling Trends in Machine Learning



Scholarship, progress is often obscured by failure to distinguish between explanation
and speculation. We aim to rigorously identify the source of model performance.

Method The Flaw

Static
Benchmarks

Contamination. Models are trained on the internet, including test
questions (Goodhart's Law). High scores often reflect retrieval.

LLM-as-a-
Judge

Circular Bias. Using GPT-4 to grade creates a self-enhancement
loop.

Human Eval
Subjectivity. "Vibe-checks" are unscalable and reinforce
confident hallucinations.

The Theoretical Challenge: Form vs. Meaning A core critique of logic benchmarking
is the assumption that reasoning can be divorced from semantic content. As Bender &
Koller (2020) argue, meaning is grounded in communicative intent, and models trained
purely on form (text) rely on distributional patterns. Consequently, purely "knowledge-
free" reasoning is impossible for LLMs; they invariably lean on learned priors.

However, McCoy et al. (2019) demonstrated that models often bypass reasoning by
adopting "syntactic heuristics". ICE targets these specific failure modes. We do not
claim to measure "general intelligence," but rather robustness against semantic
perturbation. If a model solves a problem using a robust logical definition, its
performance should be relatively invariant to the semantic skin; if it relies on surface
heuristics (non-robust features, Ilyas et al., 2019), its performance will collapse when
the skin changes.

2. The ICE Methodology

ICE operates on the principle of Invariance: A robust model's performance should be
stable across isomorphic transformations of the problem statement.

2.1 Logic Skeletons (Scope Limitation)

We currently define Six Logic Skeletons, primarily propositional syllogisms:

1. Modus Ponens:  (Valid)
2. Affirming the Consequent (Trap):  (Invalid -> Unknown)
3. Multi-Hop Chain:  (Valid)

A → B,A ⊢ B
A → B,B ⊢?

A → B,B → C,A ⊢ C



4. Modus Tollens:  (Valid)
5. Disjunctive Syllogism:  (Valid)
6. Denying the Antecedent (Trap):  (Invalid -> Unknown)

Note on Scope: This protocol rigorously evaluates deductive syllogistic robustness.
It does not claim to measure probabilistic, abductive, or creative reasoning capabilities.

2.2 Semantic Skins & Controls

These are wrapped in Eight Semantic Skins to test robustness:

1. Familiar (Control): High-probability training sequences (e.g., Socrates/Mortal).
2. Nonsense (Reasoning): Procedural fictive terms (e.g., "Gloop") to minimize

semantic priors.
3. Anti-Correlation (Negative Control): Formerly 'Counter-Factual'. Explicitly

designed to fail if models rely on training data correlations (e.g., "Socrates is
immortal"). This addresses the need for negative controls (Gorman & Bedrick,
2019).

4. Medical (High Stakes): Diagnostic logic (e.g., Sepsis thresholds).
5. Legal (Rule Based): Procedural logic (e.g., Admissibility).
6. Sci-Fi (Novel Rules): Fictional physics (e.g., Warp Drive).
7. Financial (Risk): Market signal logic.
8. Security (Adversarial): Threat model logic.

3. The Decoupling Score (DS) & Sensitivity
Analysis

We report the Decoupling Score, a composite metric penalizing variance across
skins.

: Mean Accuracy across the eight skins.
: Standard deviation.
: Penalty coefficient (Default: 2.0).

Sensitivity Analysis: To ensure rankings are not artifacts of the parameter , the
protocol now calculates DS across a sweep of . While  remains the

A → B, ¬B ⊢ ¬A
A ∨ B, ¬A ⊢ B

A → B, ¬A ⊢?

DS = μ ​ ⋅acc (1 − α ⋅ σ)

μ ​acc

σ
α

α
α ∈ [0, 5] α = 2.0



standard reporting metric for high-stakes consistency, we track the stability of the score
as the penalty for inconsistency increases.

Figure 1: Stability of Decoupling Score across varying penalty coefficients ( ). Parallel
lines indicate robust rankings; crossing lines suggest parameter sensitivity.

4. Pilot Demonstration & Protocol Validation

Illustrative Data: Initial runs with Frontier Models (Gemini Pro, GPT-5) showed
high consistency (DS > 0.8), while Efficiency Models (Flash, Mini) showed
degradation in "Trap" scenarios.

4.1 Capability Profiling (The "Flash Bias")

The Radar Chart below visualizes the "shape" of model reasoning. Note the perfect
outer rim (Valid Logic: Modus Ponens, etc.) contrasted with the collapsed center
(Fallacy Traps), visually demonstrating the "Flash Bias" where models sacrifice nuance
for decisiveness.

α



Figure 2: Logic Capability Profile. Overlapping outer lines indicate uniform mastery of
valid logic; inner collapses reveal vulnerability to specific fallacies.

4.2 Comparative Ranking

Figure 3: Comparative Decoupling Scores across tested models.



Critical Disclaimer: These results are illustrative preliminary data only. The current
sample size (  per skin) is insufficient for statistical generalization. As Dror et al.
(2020) emphasize, reporting raw numbers without significance testing leads to non-
replicable claims. We explicitly state that these scores demonstrate the protocol's
mechanics, not a definitive benchmark.

Planned Statistical Validation :

1. Bootstrap Resampling: We will implement 1000 bootstrap resamples to
generate 95% confidence intervals for all DS scores (e.g., 

).
2. Visualized Sensitivity: Future reports will include full  curves to visually

demonstrate ranking stability.
3. Human Baseline: We will collect data from 10 human subjects on "Nonsense"

skins to establish a baseline for cognitive load vs. reasoning capability.

5. Limitations, Ethics, & Mitigation Strategies

Human Baseline Absence: A critical limitation is the current lack of a human baseline
for "Nonsense" skins. Without this, it is difficult to determine if a task is "reasoning-
heavy" or simply cognitively overloaded.

Adversarial Vulnerability: Models learn "non-robust features" (Ilyas et al.,
2019). While Nonsense skins mitigate this, they are not a cure-all. Future work
must incorporate Randomized Smoothing (Cohen et al., 2019) or adversarial
training to provide certified robustness guarantees.
Cultural Bias: The ICE protocol relies on Western, Aristotelian logic. Selbst et al.
(2019) warn against "abstraction" that ignores context. To move beyond
performative critique, future iterations must expand logic skeletons to include
Non-Western Logic systems (e.g., Buddhist Catuskoti or tetralemma) to test
reasoning competence in diverse cultural contexts.
Chain-of-Thought Fragility: We rely on CoT, but Turpin et al. (2023) indicate
that CoT explanations can be unfaithful. High ICE scores should be cross-verified
using faithful interpretation analysis (Jacovi & Goldberg, 2020) to ensure the
reasoning trace actually drives the prediction.
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